Actors in the Small

Making Actors more Useful

Bill La Forge
laforge49@gmail.com
@laforge49


mailto:laforge49@gmail.com

Actors in the Small

. Introduction

|. Making Actors Fast

ll.Making Actors Easier to Program
V. Tutorial



|. Introduction

 \What is an Actor?
* Actors are SLOW
* Why are Actors Slow?

 Actors can be FAST



What is an Actor?

* Actors are very light-weight threads, lacking
even their own stack

» Actors process events they receive them and
send events to other actors

* Actors process events one at a time, so
processing is both thread-safe and atomic

* Actors are a good alternative to threads and
locks, easier to scale vertically and easier to
debug.



Actors are SLOW

 Akka, one of the faster actor frameworks, has a

throughput of 20 million events per second
when run on a box with 45 CPU's

* That is fast enough, so long as events are not
low level

» Parsing is not a good use of actors, not within a
web server anyway



Why Actors are Slow

 Message passing is always between threads,
which is slow, especially when the destination
actor is idle

» Using events under load often raises an out of
memory exception unless flow control is
implemented by the application



Actors can be FAST

» JActor has a throughput of between 75 million
and 1 billion messages per second when run on
an 15 with 4 hardware threads

* The scope of a technique (actor programming)
is often limited by its speed

» JActor is fast enough to use for things like
parsing and CometD

 This is Actors in the Small




ll. Making Actors Fast

* Message buffering

» Single threaded

 Two-way messages

* Decoupling actors and mailboxes



Message Buffering

* Messages to be passed to an actor are buffered
and passed as a group when the actor
becomes idle (Message buffering is a common
technique in flow-based programming)



Single Threaded

 Frameworks like node.js and Twisted achieve
high throughput by performing all event
processing on a single thread

* Except as required by the application, JActor
never sends a message to an idle actor, rather
the source actor commandeers the destination
actor and processes the message itself,
synchronously



Two-Way Messages

* Flow control is implicit with 2-way (request /
response) messaging, and applications behave
more reasonably under load

» Synchronous processing (call / return) more
easily maps onto request / response messages
than onto events

* Unlike events, request processing is not atomic
iIf that processing sends any requests



Decoupling Actors and Malilboxes

* |n JActor, mailboxes are light-weight threads,
actors are not

* Every actor needs a mailbox; a mailbox can be
used by many actors

 Request / response messages passed between
actors with the same mailbox are processed
synchronously, e.g. as a method call / return.



lll. Making Actors Easier to Program

* Asynchronous message passing (sending
messages) requires callbacks

* Synchronous message passing (method call /
return) does not



Sending a Request Message

* \When sending a request to another actor, a
callback is used to receive the response

* For asynchronous responses, the callback is
invoked AFTER the sending method returns

* For synchronous responses (when only a single
thread is involved), the callback is invoked
immediately.

* You can not always predict which responses will
be synchronous or asynchronous, e.g. when
accessing a cache and an item is not present



Sending a Response Message

 When a request is received by an actor, a
callback is also passed

 Responses are returned by invoking the
callback

» Exactly one response must be returned for
each received request

* The callback sent by the source actor with a
request is often not the same as the callback
received by the destination actor due to
intermediation by JActor internals



Special Request Message Types

 Three common types of special requests are
(1) synchronous,
(2) initialization and
(3) concurrent

* These requests can be sent without a callback
via a method call—they are always processed
synchronously and the response is the return
value

* An actor which receives these requests is not
passed a callback and can not send requests
asynchronously to other actors




(1) Synchronous Requests

* An actor may call another actor with a
synchronous request only if both actors share
the same mailbox; otherwise the request must
be sent (with a callback)

» Synchronous requests, like regular

(asynchronous) requests, are processd by the
target actor with full thread safety.

* Unlike regular requests, synchronous request
processing is atomic.



(2) Initialization Requests

* An actor will not process an initialization
request after processing any other kind of
request

* Thread safety Is entirely the responsibility of the
actor that sends the initialization requests—it
must ensure that such requests are sent one at
a time



(3) Concurrent Requests

» Concerency requests can and will be processed
at the same time that the receiving actor is
processing other requests—there is no inherent
thread safety

» Concurrent request processing must only
access immutable and concurrent data
structures

* Thread safety is entirely the responsibility of the
applicatin logic used to process the request



V. Tutorial

JActor by Example
https://github.com/laforge49/JActor/wiki/Examples


https://github.com/laforge49/JActor/wiki/Examples

