

Actors in the Small

Making Actors more Useful

Bill La Forge
laforge49@gmail.com

@laforge49

mailto:laforge49@gmail.com

Actors in the Small

I. Introduction
II. Making Actors Fast
III.Making Actors Easier to Program
IV. Tutorial

I. Introduction
● What is an Actor?
● Actors are SLOW
● Why are Actors Slow?
● Actors can be FAST

What is an Actor?
● Actors are very light-weight threads, lacking

even their own stack
● Actors process events they receive them and

send events to other actors
● Actors process events one at a time, so

processing is both thread-safe and atomic
● Actors are a good alternative to threads and

locks, easier to scale vertically and easier to
debug.

Actors are SLOW
● Akka, one of the faster actor frameworks, has a

throughput of 20 million events per second
when run on a box with 45 CPU's

● That is fast enough, so long as events are not
low level

● Parsing is not a good use of actors, not within a
web server anyway

Why Actors are Slow
● Message passing is always between threads,

which is slow, especially when the destination
actor is idle

● Using events under load often raises an out of
memory exception unless flow control is
implemented by the application

Actors can be FAST
● JActor has a throughput of between 75 million

and 1 billion messages per second when run on
an i5 with 4 hardware threads

● The scope of a technique (actor programming)
is often limited by its speed

● JActor is fast enough to use for things like
parsing and CometD

● This is Actors in the Small

II. Making Actors Fast
● Message buffering
● Single threaded
● Two-way messages
● Decoupling actors and mailboxes

Message Buffering
● Messages to be passed to an actor are buffered

and passed as a group when the actor
becomes idle (Message buffering is a common
technique in flow-based programming)

Single Threaded
● Frameworks like node.js and Twisted achieve

high throughput by performing all event
processing on a single thread

● Except as required by the application, JActor
never sends a message to an idle actor, rather
the source actor commandeers the destination
actor and processes the message itself,
synchronously

Two-Way Messages
● Flow control is implicit with 2-way (request /

response) messaging, and applications behave
more reasonably under load

● Synchronous processing (call / return) more
easily maps onto request / response messages
than onto events

● Unlike events, request processing is not atomic
if that processing sends any requests

Decoupling Actors and Mailboxes
● In JActor, mailboxes are light-weight threads,

actors are not
● Every actor needs a mailbox; a mailbox can be

used by many actors
● Request / response messages passed between

actors with the same mailbox are processed
synchronously, e.g. as a method call / return.

III. Making Actors Easier to Program
● Asynchronous message passing (sending

messages) requires callbacks
● Synchronous message passing (method call /

return) does not

Sending a Request Message
● When sending a request to another actor, a

callback is used to receive the response
● For asynchronous responses, the callback is

invoked AFTER the sending method returns
● For synchronous responses (when only a single

thread is involved), the callback is invoked
immediately.

● You can not always predict which responses will
be synchronous or asynchronous, e.g. when
accessing a cache and an item is not present

Sending a Response Message
● When a request is received by an actor, a

callback is also passed
● Responses are returned by invoking the

callback
● Exactly one response must be returned for

each received request
● The callback sent by the source actor with a

request is often not the same as the callback
received by the destination actor due to
intermediation by JActor internals

Special Request Message Types
● Three common types of special requests are

(1) synchronous,
(2) initialization and
(3) concurrent

● These requests can be sent without a callback
via a method call—they are always processed
synchronously and the response is the return
value

● An actor which receives these requests is not
passed a callback and can not send requests
asynchronously to other actors

(1) Synchronous Requests
● An actor may call another actor with a

synchronous request only if both actors share
the same mailbox; otherwise the request must
be sent (with a callback)

● Synchronous requests, like regular
(asynchronous) requests, are processd by the
target actor with full thread safety.

● Unlike regular requests, synchronous request
processing is atomic.

(2) Initialization Requests
● An actor will not process an initialization

request after processing any other kind of
request

● Thread safety is entirely the responsibility of the
actor that sends the initialization requests—it
must ensure that such requests are sent one at
a time

(3) Concurrent Requests
● Concerency requests can and will be processed

at the same time that the receiving actor is
processing other requests—there is no inherent
thread safety

● Concurrent request processing must only
access immutable and concurrent data
structures

● Thread safety is entirely the responsibility of the
applicatin logic used to process the request

IV. Tutorial

JActor by Example
https://github.com/laforge49/JActor/wiki/Examples

https://github.com/laforge49/JActor/wiki/Examples

